三角形,幾何之初义也,蓋三線段相接所成者。其線段曰邊,其交曰點,二邊於形內交處所成之角曰內角。
內角和恆為二直角,故無多於一直角者。
有一直角者,曰勾股,今謂直角三角形。《九章算術》劉徽注曰:“短面曰勾,長面曰股,相與結角曰弦”。直角兩旁,短者曰勾,長者曰股,直角相對者曰弦。
有一鈍角者,謂鈍角三角形。若三角均為銳角,謂銳角三角形。
又有殊者,即二或三角相等也。若二角相等,所對邊等長,謂等腰三角形;若三角皆等,則三邊皆等長,謂等邊三角形。
知三邊長,則知其三角;知二邊長及其夾角,可得未知邊長。是以三角形穩固甚,故用於支架之物,多作三角形。
知三內角,則知其三邊比例,反以亦然。若兩三角形內角相同,曰相似三角形也。
有球面幾何,內角和可大于二直角;有雙曲幾何,內角可小于二直角。窮究其理,所謂「內角和恆為二直角」,等價於平行公理也。
流形之學,有三角化之術。三角形者,二單體也,意其三點之凸組合也。
點| 頂點| 相切| 線| 直線| 曲線| 測地線| 切線| 圓錐曲線| 拋物線| 雙曲線| 螺線| 螺旋 | 面| 平面| 曲面| 切面| 三角形| 四邊形| 多邊形| 圓| 弦| 橢圓| 體| 長方體| 立方體| 棱錐| 正多面體| 錐體| 柱體| 球| 橢球| 角| 邊| 高| 長| 距| 周界| 面積| 體積| 圓周率| 黃金分割| 相似| 全等| 平行| 垂直| 平行公理| 勾股定理| 歐氏幾何| 尺規作圖| 非歐幾何| 球面幾何| 雙曲幾何| 流形| 坐標幾何| 射影幾何| 仿射幾何