二元運算

(渡自結合律
此為底本,未經審校
註︰蓋當今數學之事,誠難僅以文述,而無符號,故凡數學之文,咸有漢字、拉丁字相易之事,以合文言、數學,則無論文理之人,皆可明之也。

二元運算者,四則之抽象也。

定義

二元運算者(「 」),集與已之直積映射己也(「  :  」)。加減乘除,皆二元運算也。甲(a)運算乙(b)而得丙,記曰「 」,或曰 ,則曰甲為被運算數(古稱實數),乙為運算數(古稱法數)。廣群者,有二元運算之代數結構也。[]

若無固定名稱,多以乘法或加法稱之。且以乘法語之。

單位元

有元素(「e」),凡乘物或乘以物,皆得斯物,曰單位元(「 」)。加法單位元謂;乘法單位元曰

結合律

若甲乙之積乘丙,同乎甲乘乙丙之積(「 」),則曰二元運算合結合律也。

其廣群曰半群。若有單位元,則曰半幺群也。

交換律

若甲乘乙必同乎乙乘甲(「 」),則曰二元運算合交換律也。

分配律

若加、乘皆二元運算,且有

  • 甲乘乙丙之和,同乎甲乙之積加甲丙之積,曰左分配律。(「 []
  • 甲乙之和乘丙,同乎甲丙之積加乙丙之積,曰右分配律。(「 」)

加乘二法合左右者,則謂二法合分配律也。

  1. 另有代數結構曰廣群
  2. 依習,先乘除後加減。