平方數者,整數平方之所得也,記曰 n 2 , n ∈ N {\displaystyle n^{2}\ ,n\in \mathrm {N} } ,其n取值無窮,故其無窮。
( a + b ) ( a − b ) = a ( a − b ) + b ( a − b ) = a 2 − a b + a b − b 2 = a 2 − b 2 {\displaystyle (a+b)(a-b)=a(a-b)+b(a-b)=a^{2}-ab+ab-b^{2}=a^{2}-b^{2}}
若五七三十五 35 = 6 2 − 1 = ( 6 + 1 ) ( 6 − 1 ) = 5 ⋅ 7 {\displaystyle 35=6^{2}-1=(6+1)(6-1)=5\cdot 7}
或以十二進制計之曰5×7=2Ɛ=30-1=62-1
( a + b ) 2 = a ( a + b ) + b ( a + b ) = a 2 + a b + a b + b 2 = a 2 + 2 a b + b 2 {\displaystyle (a+b)^{2}=a(a+b)+b(a+b)=a^{2}+ab+ab+b^{2}=a^{2}+2ab+b^{2}}
若 12 2 = ( 10 + 2 ) 2 = 100 + 2 × 20 + 4 = 144 {\displaystyle 12^{2}=(10+2)^{2}=100+2\times 20+4=144} ,且自五進制即成之
19 2 = ( 20 − 1 ) 2 = 400 − 2 × 20 + 1 = 361 {\displaystyle 19^{2}=(20-1)^{2}=400-2\times 20+1=361}