手算開方者,算術也。
或問:毋論中原泰西,古人無電算盤,何以算開方?
答曰:可以直式算之。
先置待開方之數於根號中。自小數點,毋論左右,逢二位分之。若小數位之位數奇數也,補零末位。
分畢,求某數,其平方窮大,遜於首組數,記之上。某數平方於首組數差,記之下,乘以一百。
乘畢,加諸次組數。使上述某數乘以二十,後加新某數,復乘之,使其窮大,而遜於方求之差與次組數和,相減,得新差。記新某數於上,新差於下。
周而復始,得欲求之精度,可止。
若小數後缺位,可復補雙零。
按恆等式,得 ( a + b ) 2 = a 2 + 2 a b + b 2 = a 2 + ( 2 a + b ) b {\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}=a^{2}+(2a+b)b} 。故置十位於 a {\displaystyle a} ,個位於 b {\displaystyle b} ,是法也。
此例開方二百也。
1 4 . 1 4 2 2 | 00.00 | 00 | 00 1 _ 1 × 1 ≤ 2 1 00 a = 1 0 , b = 4 96 _ ⇒ ( 2 a + b ) b = 2 4 × 4 = 96 ≤ 100 4 00 a = 1 4 0 , b = 1 2 81 _ ⇒ ( 2 a + b ) b = 28 1 × 1 = 281 ≤ 400 1 19 00 a = 1 4 1 0 , b = 4 1 12 96 _ ⇒ ( 2 a + b ) b = 282 4 × 4 = 11296 ≤ 11900 6 04 00 a = 1 4 1 4 0 , b = 2 5 65 64 _ ⇒ ( 2 a + b ) b = 2828 2 × 2 = 56564 ≤ 60400 38 36 {\displaystyle {\begin{array}{ll}\quad {\color {Red}1}~~{\color {Green}4}.~~{\color {Blue}1}~~{\color {Purple}4}~~{\color {Orange}2}\\{\sqrt {2|00.00|00|00}}\\\quad {\underline {1\quad ~}}&\quad {\color {Red}1}\times {\color {Red}1}\leq 2\\\quad 1~00&a={\color {Red}1}0,b={\color {Green}4}\\\quad {\underline {~~\,96\quad ~}}&\quad \Rightarrow (2a+b)b=2{\color {Green}4}\times {\color {Green}4}=96\leq 100\\\qquad ~4~00&a={\color {Red}1}{\color {Green}4}0,b={\color {Blue}1}\\\qquad ~{\underline {2~81\quad ~}}&\quad \Rightarrow (2a+b)b=28{\color {Blue}1}\times {\color {Blue}1}=281\leq 400\\\qquad ~1~19~00&a={\color {Red}1}{\color {Green}4}{\color {Blue}1}0,b={\color {Purple}4}\\\qquad ~{\underline {1~12~96\quad ~}}&\quad \Rightarrow (2a+b)b=282{\color {Purple}4}\times {\color {Purple}4}=11296\leq 11900\\\qquad \quad ~~6~04~00&a={\color {Red}1}{\color {Green}4}{\color {Blue}1}{\color {Purple}4}0,b={\color {Orange}2}\\\qquad \quad ~~{\underline {5~65~64}}&\quad \Rightarrow (2a+b)b=2828{\color {Orange}2}\times {\color {Orange}2}=56564\leq 60400\\\qquad \quad \quad ~\,38~36\\\end{array}}}
200 ≈ 14.14213562373095048801668872421 {\displaystyle {\sqrt {200}}\approx 14.14213562373095048801668872421}
取二小數位,得開方二百概十四點一四。