完全數

完全數者,正整數也。其正因子之和適等於本數。如六,一、二、三之和也;二十八,一、二、四、七、十四之和也。
(渡自完美數

完全數者,正整數也。其正因子之和適等於本數。如六,一、二、三之和也;二十八,一、二、四、七、十四之和也。[]

歐幾里得證之:二冪減一為素數,則此素數與前冪之積為偶完全數。如六、二十八、四百九十六、八千一百二十八是也。[]歐拉復證:偶完全數必如是形。[]

迄今未知奇完全數之存否,亦未明完全數之多寡。[]然學者考之,得若干性質:

其一,偶完全數皆為三角數,亦為六邊數[]

其二,偶完全數之二進式表甚特,皆若干一後接等數之零。[]

其三,完全數之因子之倒數和必為二。[]

其四,完全數之因子數必為偶。[]

奇完全數若存,必大於十之千五百冪。其因子至少百有一。[]

數學家窮索數千載,然此數之奧秘尚未盡明。非淺學所能窺其堂奧,唯精於此道者,方能探其精微。[一〇]

  1. Dickson, L. E. (1919). History of the Theory of Numbers, Vol. I. Washington: Carnegie Institution of Washington. p. 4.
  2. Caldwell, Chris, "A proof that all even perfect numbers are a power of two times a Mersenne prime".
  3. Euler, Leonhard. "De numeris amicabilibus". Archived from the original on 2019-04-14.
  4. Pomerance, Carl (1974). "Odd perfect numbers are divisible by at least seven distinct primes". Acta Arithmetica. 25 (3): 265–300.
  5. Luo, Ming (2014). "Triangular numbers and their sums". arXiv:1408.5755 [math.NT].
  6. Holdener, Judy A. (2002). "A Theorem of Touchard on the Form of Odd Perfect Numbers". The American Mathematical Monthly. 109 (7): 661–663.
  7. Guy, Richard K. (2004). Unsolved problems in number theory (3rd ed.). Springer-Verlag. ISBN 0-387-20860-7.
  8. Cohen, G. L.; Hagis, P. Jr. (1998). "Every positive integer ≥ 2 is the sum of three squares of deficient numbers". Mathematics of Computation. 67 (224): 1745–1749.
  9. Ochem, Pascal; Rao, Michaël (2012). "Odd perfect numbers are greater than 10^1500". Mathematics of Computation. 81 (279): 1869–1877.
  10. Rosen, Kenneth H. (2011). Elementary Number Theory and Its Applications (6th ed.). Addison-Wesley. ISBN 978-0-321-50031-2.