二項式定理者,以究二項和之冪之拆解也。
( a + b ) n = ∑ k = 0 n [ C n k a n − k b k ] {\displaystyle (a+b)^{n}=\sum _{k=0}^{n}\left[C_{n}^{k}a^{n-k}b^{k}\right]}
可以數學歸納法證之:
n = 0 {\displaystyle n=0} ,則
( a + b ) 0 = 1 = ∑ k = 0 0 [ C 0 k a 0 − k b k ] {\displaystyle (a+b)^{0}=1=\sum _{k=0}^{0}\left[C_{0}^{k}a^{0-k}b^{k}\right]}
n = 1 {\displaystyle n=1} ,則
( a + b ) 1 = a + b = ∑ k = 0 1 [ C 1 k a 1 − k b k ] {\displaystyle (a+b)^{1}=a+b=\sum _{k=0}^{1}\left[C_{1}^{k}a^{1-k}b^{k}\right]}
令 n = j {\displaystyle n=j} ,則
( a + b ) j = ∑ k = 0 j [ C j k a j − k b k ] {\displaystyle (a+b)^{j}=\sum _{k=0}^{j}\left[C_{j}^{k}a^{j-k}b^{k}\right]}
n = j + 1 {\displaystyle n=j+1} ,則
( a + b ) j + 1 = ( a + b ) ∑ k = 0 j [ C j k a j − k b k ] {\displaystyle (a+b)^{j+1}=(a+b)\sum _{k=0}^{j}\left[C_{j}^{k}a^{j-k}b^{k}\right]}
= ∑ k = 0 j [ C j k a j + 1 − k b k ] + ∑ k = 0 j [ C j k a j − k b k + 1 ] {\displaystyle =\sum _{k=0}^{j}\left[C_{j}^{k}a^{j+1-k}b^{k}\right]+\sum _{k=0}^{j}\left[C_{j}^{k}a^{j-k}b^{k+1}\right]}
= a j + 1 + ∑ k = 1 j [ C j k a j + 1 − k b k ] + ∑ k = 1 j [ C j k − 1 a j + 1 − k b k ] {\displaystyle =a^{j+1}+\sum _{k=1}^{j}\left[C_{j}^{k}a^{j+1-k}b^{k}\right]+\sum _{k=1}^{j}\left[C_{j}^{k-1}a^{j+1-k}b^{k}\right]}
= a j + 1 + ∑ k = 1 j [ C j + 1 k a j + 1 − k b k ] {\displaystyle =a^{j+1}+\sum _{k=1}^{j}\left[C_{j+1}^{k}a^{j+1-k}b^{k}\right]}
= ∑ k = 0 j [ C j + 1 k a j + 1 − k b k ] {\displaystyle =\sum _{k=0}^{j}\left[C_{j+1}^{k}a^{j+1-k}b^{k}\right]}
故得證之。