一進制者,計數弗以進位也,即以符數示其多寡,故其僅可示正整數也,有 n ∈ N ∗ {\displaystyle \mathrm {n} \in \mathrm {N^{*}} } ,或零以無符示之, n ∈ N {\displaystyle \mathrm {n} \in \mathrm {N} } 如下表
加者,并兩數之符也,減者,前符減後符也。如
∗ ∗ ∗ + ∗ ∗ = ∗ ∗ ∗ ∗ ∗ {\displaystyle ***+**=*****}
∗ ∗ ∗ ∗ ∗ ∗ − ∗ ∗ ∗ ∗ = ∗ ∗ {\displaystyle ******-****=**}
乘除亦然
∗ ∗ ∗ × ∗ ∗ = ∗ ∗ ∗ + ∗ ∗ ∗ = ∗ ∗ ∗ ∗ ∗ ∗ {\displaystyle ***\times **=***+***=******}
∗ ∗ ∗ ∗ ∗ ∗ ∗ ÷ ∗ ∗ ∗ = ∗ ∗ … … ∗ {\displaystyle *******\div ***=**{\dots \dots }*}
∗ ∗ ∗ ∗ ∗ ∗ ÷ ∗ ∗ = ∗ ∗ ∗ {\displaystyle ******\div **=***}
( ∗ ∗ ∗ ) ! = ∗ × ∗ ∗ × ∗ ∗ ∗ = ∗ ∗ ∗ ∗ ∗ ∗ {\displaystyle (***)!=*\times **\times ***=******}
一進制者,何以爲進制?蓋其基數維壹,又 1 r + = 1 , r ∈ R {\displaystyle 1^{r_{+}}=1,r\in \mathrm {R} } 故
∗ ∗ ∗ ∗ ∗ ∗ ⋯ ⋯ ∗ ∗ ⏟ n = n ⋅ ∗ = 1 n − 1 + 1 n − 2 + ⋯ ⋯ + 1 1 + 1 0 = 1 + 1 + ⋯ ⋯ + 1 ⏟ n = n {\displaystyle \underbrace {******\cdots \cdots **} _{n}=n\cdot *=1^{n-1}+1^{n-2}+{\cdots \cdots }+1^{1}+1^{0}=\underbrace {1+1+\cdots \cdots +1} _{n}=n}
故一進制屬進位制。