黎曼和者,定積分之定義也。其以極限趨算函數交 x {\displaystyle x} 軸兼二垂線之面積。
有函數 f ( x ) {\displaystyle f(x)} ,若計 x = a {\displaystyle x=a} 之 x = b {\displaystyle x=b} ( b > a {\displaystyle b>a} )其所圍之積,則削 x {\displaystyle x} 軸 a {\displaystyle a} 之 b {\displaystyle b} 部 n {\displaystyle n} 份下是函,記闊 Δ x {\displaystyle \Delta x} ( Δ x = b − a n {\displaystyle \Delta x={\frac {b-a}{n}}} ),各部類長方形,故視其如是。 a {\displaystyle a} 之 b {\displaystyle b} 間,凡有 x i = a + i Δ x {\displaystyle x_{i}=a+i\Delta x} ( i {\displaystyle i} )者,其下是函小長方之積 f ( x i ) Δ x {\displaystyle f(x_{i})\Delta x} 也。故下是函之面積幾近 f ( x 1 ) Δ x + f ( x 2 ) Δ x + f ( x 3 ) Δ x + ⋯ + f ( x n ) Δ x = ∑ i = 1 n f ( x i ) Δ x {\displaystyle f(x_{1})\Delta x+f(x_{2})\Delta x+f(x_{3})\Delta x+\cdots +f(x_{n})\Delta x=\sum _{i=1}^{n}f(x_{i})\Delta x} 。以極限趨 n {\displaystyle n} 於無窮,得函所圍之積,實 lim n → ∞ ∑ i = 1 n f ( x i ) Δ x {\displaystyle \lim _{n\to \infty }\sum _{i=1}^{n}f(x_{i})\Delta x} 。此記曰黎曼和也。故, ∫ a b f ( x ) d x = lim n → ∞ ∑ i = 1 n f ( x i ) Δ x {\displaystyle \int _{a}^{b}f(x)dx=\lim _{n\to \infty }\sum _{i=1}^{n}f(x_{i})\Delta x} 。